If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+1.4x-2=0
a = 5; b = 1.4; c = -2;
Δ = b2-4ac
Δ = 1.42-4·5·(-2)
Δ = 41.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.4)-\sqrt{41.96}}{2*5}=\frac{-1.4-\sqrt{41.96}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.4)+\sqrt{41.96}}{2*5}=\frac{-1.4+\sqrt{41.96}}{10} $
| 7x-35=5x+15 | | 3x2-12x-15=0 | | 3x^2-19=281 | | 9(x-1)=3/4 | | 0.2/3y=1.6/2 | | x-x*x/100=21 | | x-x/100=21 | | 9-7x^2=-103 | | 3-1/2x=1/4x | | 5(5x-4)+3=-10 | | 2*2+3y=9 | | -3+13y+8=14+16y-24 | | 5x-7=2x+32 | | 2×2+3y=9 | | 15+2x^2=113 | | 2x^2+15=113 | | 6-(x/7)=8 | | 1/5a=7/15 | | 7-(x/5)=-11 | | 8-(x/7)=-6 | | 1694/x+14=25 | | √1964/x+14=25 | | -8+4x^2=8 | | 3+3x^2=111 | | 5^(x)=2/13 | | 2x*3x+2=46 | | 9x−8=5x−12 | | 3n+-3=24 | | 6+2x^2=24 | | ⅔(3x-5)-3/5(2x-3)=3 | | ⅔(3x-5)-¾(2x-3)=3 | | 5/15=(8-x)/x |